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Fisher zeros of theQ-state Potts model in the complex temperature plane
for nonzero external magnetic field

Seung-Yeon Kim* and Richard J. Creswick†

Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208
~Received 24 June 1998!

The microcanonical transfer matrix is used to study the distribution of the Fisher zeros of theQ.2 Potts
models in the complex temperature plane with nonzero external magnetic fieldHq . Unlike the Ising model for
HqÞ0, which has only a nonphysical critical point~the Fisher edge singularity!, theQ.2 Potts models have
physical critical points forHq,0 as well as the Fisher edge singularities forHq.0. ForHq,0, the crossover
of the Fisher zeros of theQ-state Potts model into those of the (Q21)-state Potts model is discussed, and the
critical line of the three-state Potts ferromagnet is determined. ForHq.0, we investigate the edge singularity
for finite lattices and compare our results with the high-field, low-temperature series expansion of Enting. For
3<Q<6, we find that the specific heat, magnetization, susceptibility, and the density of zeros diverge at the
Fisher edge singularity with exponentsae , be , and ge , which satisfy the scaling lawae12be1ge52.
@S1063-651X~98!00712-0#

PACS number~s!: 05.50.1q, 05.70.2a, 64.60.Cn, 75.10.Hk
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I. INTRODUCTION

The Q-state Potts model@1,2# in two dimensions exhibits
a rich variety of critical behavior and is very fertile groun
for the analytical and numerical investigation of first- a
second-order phase transitions. With the exception of thQ
52 Potts~Ising! model in the absence of an external ma
netic field@3#, exact solutions for arbitraryQ are not known.
However, some exact results have been established fo
Q-state Potts model. ForQ52, 3, and 4 there is a second
order phase transition, while forQ.4 the transition is first
order @4#. From the duality relation, the critical temperatu
is known to beTc5J/kBln(11AQ) @1#. For Q53 and 4 the
critical exponents@5# are known, while forQ.4 the latent
heat @4#, spontaneous magnetization@6#, and correlation
length @7# at Tc are also known.

By introducing the concept of the zeros of the partiti
function in thecomplexmagnetic-field plane~Yang-Lee ze-
ros!, Yang and Lee@8# proposed a mechanism for the occu
rence of phase transitions in the thermodynamic limit a
yielded a new insight into the unsolved problem of the Is
model in an arbitrary nonzero external magnetic field. L
and Yang@8# also formulated the celebrated circle theore
which states that the Yang-Lee zeros of the Ising ferrom
net lie on the unit circlex05eiu in the complex x
5exp(bH) plane for any size lattice and any type of boun
ary conditions. The density of zeros contains all the inform
tion about a system and in particular in the thermodyna
limit the density of zeros completely determines the criti
behavior of the system@8,9,29#. For example, the spontane
ous magnetization of the Ising model is determined by
density of zeros on the positive real axis, i.e.,m0(T)
52pg(u50,T). Above the critical temperatureTc , there is
a gap in the distribution of zeros, centered atu50, that is,
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g(u,T)50 for uuu,u0(T). Within this gap, the free energ
is analytic and there is no phase transition. The Yang-L
zeros atu56u0 are called the Yang-Lee edge zeros. AsT
2Tc→01, u0(T)→0. At Tc the gap disappears, i.e
u0(Tc)50 andg(0,Tc)50, which is the characteristic of a
second-order phase transition. BelowTc , g(0,T).0 and we
have a finite spontaneous magnetization. Kortman and G
fiths @10# carried out the first systematic investigation
g(u,T), based on the high-field, high-temperature series
pansion for the Ising model on the square lattice and
diamond lattice. They found that aboveTc , g(u,T) di-
verges atu56u0 , i.e., at the Yang-Lee edge singularity fo
the square lattice. The divergence of the density of the Ya
Lee zeros means the magentization diverges, which does
occur at a physical critical point. Fisher@11# proposed the
idea that the singularity at the Yang-Lee edge can be thou
of as a new second-order phase transition with associ
critical exponents and the Yang-Lee edge zero can be c
sidered as a conventional critical point. Fisher also renam
the Yang-Lee edge zero as the Yang-Lee edgesingularity.
The critical point of the Yang-Lee edge singularity is ass
ciated with af3 theory, different from the usual critica
point associated with thef4 theory. The crossover dimen
sion of the Yang-Lee edge singularity isdc56. The study of
the Yang-Lee edge singularity has been extended to the c
sical n-vector model@12#, the quantum Heisenberg mod
@12#, the spherical model@13#, the quantum one-dimensiona
transverse Ising model@14#, the hierarchical model@15#, and
the one-dimensional Potts model@16#. Using Fisher’s idea
and conformal field theory, Cardy@17# studied the Yang-Lee
edge singularity for a two-dimensionalf3 theory. Recently
the Yang-Lee zeros of the two-dimensionalQ-state Potts
model have been studied@31#.

In 1964 Fisher@18# emphasized that the partition functio
zeros in the complex temperature plane~Fisher zeros! are
also very useful in understanding phase transitions. In p
ticular, in the complex temperature plane both the ferrom
netic phase and the antiferromagnetic phase can be co
7006 © 1998 The American Physical Society
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ered at the same time. From the exact solutions@3# of the
square lattice Ising model, Fisher conjectured that in the
sence of an external magnetic field the zeros of the parti
function lie on two circles in the complexy5exp(2bJ)
plane given byyFM5211A2eiu ~ferromagnetic circle! and
yAFM511A2eiu ~antiferromagnetic circle!. Fisher also
showed that the logarithmically infinite specific-heat sing
larity of the Ising model results from the properties of t
density of zeros. By numerical investigations@19# and ana-
lytical methods@20# it has been concluded that for very sp
cial boundary conditions the Fisher zeros of the Ising mo
do indeed lie on two circles, while for more general boun
ary conditions the zeros approach two circles as the siz
the lattices increases. Recently the locus of the Fisher z
of theQ-state Potts model in the absence of an external m
netic field has been studied extensively@21–23,25,30#. It has
been shown@23# that for self-dual boundary conditions ne
the ferromagnetic critical pointyc51/(11AQ), the Fisher
zeros of the Potts model on a finite square lattice lie on
circle with center21/(Q21) and radiusAQ/(Q21) in the
complex y plane, while the antiferromagnetic circle of th
Ising model completely disappears forQ.2. It is also
known @23# that all the Fisher zeros of the one-state Po
model lie aty2150. Shrocket al. showed that for the two-
dimensional Ising@24# and Potts@25# models in the absenc
of an external magnetic field there exist nonphysical criti
points in the complex temperature plane, at which thermo
namic functions including the magnetization diverge. Itzy
son et al. @26# considered the Fisher zeros in an exter
magnetic field for the first time. They studied the movem
of the Fisher zero closest to the positive real axis for
Ising model as the strength of a magnetic field changes.
nonzero magnetic field there is a gap in the distribution
the Fisher zeros of the Ising model around the positive
axis even in the thermodynamic limit, which means th
there is no phase transition. Matveev and Shrock@27# studied
the Fisher zeros of the two-dimensional Ising model in
external magnetic field using the high-field, low-temperat
series expansion and the partition functions of finite-size s
tems. They found that for nonzero magnetic field, the m
netization, susceptibility, specific heat, and the density
zeros diverge at the Fisher zero closest to the positive
axis, which we call the Fisher edge singularity. In this pa
we discuss the Fisher zeros of theQ-state Potts model fo
nonzero magnetic field using the microcanonical transfer
trix and the high-field, low-temperature series expansion

II. MICROCANONICAL TRANSFER MATRIX
AND SYMMETRIES

The Q-state Potts model on a latticeG in an external
magnetic fieldHq is defined by the Hamiltonian

HQ52J(
^ i , j &

d~s i ,s j !2Hq(
k

d~sk ,q!, ~1!

whereJ is the coupling constant,^ i , j & indicates a sum ove
nearest-neighbor pairs,s i50, . . . ,Q21, and q is a fixed
integer between 0 andQ21. The partition function of the
model is
b-
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ZQ5 (
$sn%

e2bHQ, ~2!

where $sn% denotes a sum over all possible configuratio
andb5(kBT)21. The partition function can be written as

ZQ5y2Nb (
E50

Nb

(
M50

Ns

VQ~E,M !xMyE, ~3!

wherex5ebHq, y5e2bJ, E and M are positive integers 0
<E<Nb and 0<M<Ns , respectively,Nb and Ns are the
number of bonds and the number of sites on the latticeG,
andVQ(E,M ) is the number of states with fixedE and fixed
M. Using the microcanonical transfer matrix (mTM) @28–
31#, we have calculated the number of statesVQ(E,M ) of
the Q-state Potts model on finite square lattices with se
dual boundary conditions@23# and cylindrical boundary con
ditions for 3<Q<8.

In the absence of an external magnetic field, the partit
function of theQ-state Potts model is symmetric under t
dual transformation

y→
12y

11~Q21!y
, ~4!

which gives the critical point

yc5
1

11AQ
~5!

and the invariant ferromagnetic circle of the Fisher zeros

y0~u!5
211AQeiu

Q21
. ~6!

The partition function of the Ising model has the addition
symmetry

y→
1

y
, ~7!

which maps the ferromagnetic Ising model to the antifer
magnetic model. This, together with the dual transformati
implies the invariance of the antiferromagnetic circle

y0511A2eiu. ~8!

However, theQ.2 Potts models do not possess this seco
symmetry and the associated Fisher zeros are scattered i
noncritical region. For nonzero magnetic field the Isi
model also has the symmetry

x→
1

x
, ~9!

and the Fisher zeros for 0,x,1 have the same properties a
those for 1,x,`. TheQ.2 Potts models do not have th
symmetry, and distribution of zeros for 0,x,1 is different
from the distribution for 1,x,`. Because theQ.2 Potts
models are less symmetric than the Ising model, the zero
the partition function have a much richer structure. For e
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FIG. 1. Fisher zeros in the complexy plane of a 737 three-state Potts model for~a! x51, ~b! 0.5, ~c! 0.05, and~d! 0.001 with self-dual
boundary conditions.
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ample, the Ising model has only nonphysical critical poi
in the complexy plane forxÞ1, while theQ.2 Potts mod-
els have both nonphysical and physical critical points in
same plane forxÞ1. In this paper we study the Fisher zer
of the Q-state Potts model for nonzero magnetic field to u
veil some of the rich structures of the model.

III. FISHER ZEROS OF THE THREE-STATE POTTS
MODEL FOR x<1

In the limit Hq→2` (x→0) the partition function of
the Q-state Potts model becomes

ZQ5y2Nb (
E50

Nb

VQ~E,M50!yE, ~10!

where VQ(E,M50) is the same as the number of sta
VQ21(E) of the (Q21)-state Potts model in the absence
s

e

-

s
f

an external magnetic field. Asx decreases from 1 to 0, th
Q-state Potts model is transformed into the (Q21)-state
Potts model in zero external field. Figure 1 shows the Fis
zeros in the complexy plane of the three-state Potts mod
for x<1 with self-dual boundary conditions. Note that in th
absence of an external magnetic field for self-dual bound
conditions the Fisher zeros in the critical region of the Po

TABLE I. The critical temperatureyc and the critical exponen
yt of the three-state Potts model for 0<x<1.

x yc ~BST! yc ~exact! yt ~BST! yt ~exact!

0 0.414(3)10.0002(4)i 0.414213 . . . 1.001~2! 1
0.001 0.414(3)10.0002(4)i 1.001~2!

0.05 0.413(5)10.0002(3)i 1.0009~6!

0.5 0.400(2)10.000(2)i 0.982~21!

1 0.366(2)10.0002(5)i 0.366025 . . . 1.195~3! 6
5
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model lie on the circle given by Eq.~6! @23#. In Fig. 1~a! the
circle is that of Eq.~6! with Q53 ~the three-state Pott
circle!, while in Figs. 1~c! and 1~d! the circle is forQ52
~the Ising circle!. In Fig. 1~b! we show both the three-stat
Potts circle~smaller one! and the Ising circle~larger one!,
and the Fisher zeros lie on neither the three-state Potts c
nor the Ising circle. In Fig. 1~c! the Fisher zeros near th
ferromagnetic critical point begin to approach the Isi
circle, and the antiferromagnetic circle of the Ising mod
begins to appear. In Fig. 1~d! almost all of the Fisher zeros

FIG. 2. Critical temperatures of the three-state Potts ferroma
as a function of the magnetic field.Hq is in units ofJ andT is in
units ofJ/kB . The upper dotted line is the Ising transition tempe
ture in the limit Hq→2`, while the lower dotted line shows th
critical temperature of the three-state Potts model forHq50.

FIG. 3. Fisher zeros in the complexy plane of an 838 three-
state Potts model forh5bH varying from 0 to 4 in steps of 1 with
cylindrical boundary conditions.
le

l

which will ultimately lie on the ferromagnetic circle of th
Ising model atx50, are very close to this locus, and th
antiferromagnetic circle becomes clearer.

IV. CRITICAL POINT OF THE THREE-STATE POTTS
MODEL IN A FIELD H q<0

For an external fieldHq,0, one of the Potts states i
suppressed relative to the others. The symmetry of
Hamiltonian is that of the (Q21)-state Potts model in zer
external field, so that we expect to see crossover from
Q-state critical point to the (Q21)-state critical point as
2Hq is increased.

We have studied the field dependence of the critical po
for 0<x<1 through the Fisher zero closest to the real ax
y1(x,L). For a given applied field,y1 approaches the critica
point y1(L)→yc(x) in the limit L→`, and the thermal ex-
ponentyt(L) defined as@22,26#

yt~L !52
ln $Im@y1~L11!#/Im@y1~L !#%

ln@~L11!/L#
~11!

will approach the critical exponentyt(x). Table I shows val-
ues foryc(x) extrapolated from calculations ofy1(x,L) on
L3L lattices for 3<L<8 using the Bulirsch-Stoer~BST!
algorithm @32#. The error estimates are twice the differen
between the (n21,1) and (n21,2) approximants@32#. The
critical points for x51 ~three-state! and x50 ~two-state!
Potts models are known exactly and are included in Tab
for comparison. Note that the imaginary parts ofyc ~BST!

TABLE II. Values of be andye estimated from Dlog Pade´ ap-
proximants to magnetization forQ53 andx5100.

@N/D# be ye

@7/8# 20.2077 1.24325611.052564i
@8/8# 20.1967 1.23660411.045093i
@9/8# 20.1952 1.23744511.043712i
@8/9# 20.1954 1.23800611.043638i
@9/9# 20.1957 1.23673311.044346i
@10/9# 20.1939 1.23509311.044025i
@9/10# 20.1956 1.23555611.044725i
@10/10# 20.1953 1.23541611.044633i
@11/10# 20.1930 1.23308711.045059i
@10/11# 20.1956 1.23552311.044727i
@11/11# 20.2003 1.23391111.047358i
@12/11# 20.1975 1.23355611.046650i
@11/12# 20.1972 1.23367511.046438i
@12/12# 20.1977 1.23353811.046729i
@13/12# 20.1975 1.23354911.046638i
@12/13# 20.1959 1.23347811.046087i
@13/13# 20.1991 1.23324911.047366i
@14/13# 20.1966 1.23334011.046474i
@13/14# 20.1943 1.23281011.046075i
@14/14# 20.1937 1.23185011.046918i
@15/14# 20.1970 1.23345811.046527i
@14/15# 20.1945 1.23288911.046035i
@15/15# 20.1945 1.23188811.047107i
@16/15# 20.1966 1.23332811.046471i

et

-
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TABLE III. The location and the edge critical exponents of the Fisher edge singularity for the three
Potts model.

x ye ~BST! ye ~series! ae be ge

20 0.880(2)10.643(2)i 0.880(4)10.641(3)i 1.2~1! 20.19(1) 1.2~1!

100 1.233(7)11.050(3)i 1.232(2)11.048(3)i 1.22~2! 20.197(6) 1.20~3!

200 1.436(8)11.270(1)i 1.436(2)11.268(2)i 1.22~2! 20.196(7) 1.21~3!
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are all consistent with zero. We have also calculated
thermal exponent,yt , applying the BST algorithm to the
values given by Eq.~11!, and these results are also presen
in Table I. Forx51 we findyt very close to the known value
yt56/5 for the three-state model, but forx as large as 0.5 we
obtainyt51, the value of the thermal exponent for the tw
state~Ising! model.

Figure 2 shows the critical line of the three-state Po
ferromagnet forHq,0. In Fig. 2 the upper line is the critica
temperature of the two-state model,Tc(Q52)51/ln(1
1A2), and the lower line is the critical temperature for t
three-state model,Tc(Q53)51/ln(11A3). The critical line
for small 2Hq is given by@33#

T2Tc~Q53!;~2Hq!yt /yh, ~12!

whereyt56/5 andyh528/15 for the three-state Potts mode

V. FISHER ZEROS OF THE THREE-STATE POTTS
MODEL FOR x>1

In the limit Hq→` (x→`) the positive fieldHq favors
the stateq for every site and theQ-state Potts model is trans
formed into the one-state model@23#. The zeros are given by

ZQ;y2Nb (
E50

Nb

VQ~E,M5Ns!y
E50. ~13!

BecauseVQ(E,M5Ns)51 for E50 and 0 otherwise, Eq
~13! is

y2Nb50. ~14!

As x increases,uy0u for all the zeros increases without boun
Figure 3 shows the Fisher zeros in the complexy plane of

the three-state Potts model forh5bH varying from 0 to 4 in
steps of 1. Ash increases, all the Fisher zeros move aw
from the origin. Note that forh.0 there is accumulation o
the Fisher zeros as we approach the Fisher edge zero, th
the Fisher zero closest to the positive real axis. That kind
accumulation suggests that forh.0 the density of zeros di
verges at the Fisher edge zero, which we call the Fisher e
e

d

s

y

t is,
f

ge

singularity. The critical exponents associated with the ed
singularity are defined in the usual way,

Ce;S 12
y

ye
D 2ae

, ~15!

me;S 12
y

ye
D be

, ~16!

and

xe;S 12
y

ye
D 2ge

, ~17!

whereye is the location of the Fisher edge singularity, a
Ce , me , andxe are the singular parts of the specific he
magnetization, and susceptibility, respectively.

To study the critical behavior at the Fisher edge singu
ity, we have used the high-field, low-temperature series
pansion for the three-state Potts model due to Enting@34,36#,
which is coded as partial generating functions. Table
shows estimates forye andbe from Dlog Pade´ approximants
@35# for the magnetization atx5100. For this value ofx we
find ae51.22(2), be520.197(6), andge51.20(3). Note
that bothbe andae are unphysical in thatbe,0 implies a
divergent magnetization andae.1 implies a divergent en-
ergy density. The density of zeros near the Fisher edge
gularity in the complex temperature plane is given by@18#

g~y!;S 12
y

ye
D 12ae

. ~18!

Therefore,ae.1 means that the density of zeros diverges
the Fisher edge singularity. Fromae , be , andge we obtain

ae12be1ge52.03~4!, ~19!

so that the Rushbrooke scaling lawa12b1g52, which is
known to hold at a physical critical point, is also satisfied
the Fisher edge singularity. From the series expansions
the specific heat, magnetization, and susceptibility we h
obtained the location of the Fisher edge singularity
TABLE IV. The location and the edge critical exponents of the Fisher edge singularity for the 4<Q
<6 Potts models andx5100.

Q ye ~BST! ye ~series! ae be ge

4 1.13(6)10.96(4)i 1.159(5)10.93(1)i 1.18~8! 20.180(4) 1.12~8!

5 1.09(4)10.861(8)i 1.103(4)10.86(1)i 1.2~1! 20.173(4) 1.1~1!

6 1.053(8)10.811(4)i 1.2~1! 20.164(9) 1.1~1!
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ye~series!51.232~2!11.048~3!i , ~20!

which is in excellent agreement with the value we calcul
by extrapolation from finite-size systems using the BST
gorithm,

ye~BST!51.233~7!11.050~3!i . ~21!

We have also studied the critical behavior at the Fisher e
singularity for several values ofx. Table III shows the edge
critical exponents and the location of the Fisher edge sin
larity for x520, 100, and 200. The edge critical expone
for any x satisfy the relationae12be1ge52 within our
error estimates. The locations of the Fisher edge singula
obtained from the series analysis agree very well with th
extrapolated from finite size data by the BST algorith
Table III suggests that the values of the edge critical ex
nents are independent ofx.

VI. FISHER ZEROS OF THE Q>3 POTTS MODELS
FOR NONZERO MAGNETIC FIELD

Using the high-field, low-temperature series expansion
the Q-state Potts model for 4<Q<6 @36#, we have studied
the critical behavior at the Fisher edge singularity
Q.3. Table IV shows the edge critical exponents and
locations of the Fisher edge singularities for 4<Q<6 and
x5100. The edge critical exponents for anyQ satisfy the
relation ae12be1ge52 within our error estimates. AsQ
increases,be appears to decrease slightly, whileae and ge
are constant within error. However, because the uncertain
in ae andge are large, we do not know whetherae andge
are truly independent ofQ. Even though the Yang-Lee edg
singularities have never been studied for the tw
dimensionalQ.2 Potts models, according to the study
other models@10–12,14# and conformal field theory@17# one
expects the critical behavior of the Yang-Lee edge singul
ties in two dimensions to be universal. However, in a stu
@25# of the Fisher~or complex-temperature! singularities of
the Potts model in the absence of an external magnetic fi
Shrocket al.have observed a dependence of the edge crit
exponents onQ. In Table IV the BST estimates and th
series results for the location of the Fisher edge singular
agree with each other forQ54 and 5. ForQ56 we have
calculatedVQ(E,M ) up to L55, and the BST extrapolation
is unreliable because the maximum size of the lattice
small. Figure 4 shows the Fisher zeros in the compley
plane of the six-state Potts model forx5100, and the loca-
tion of the edge singularities calculated from the seri
,

e
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which has been the traditional method@25,27# in the study of
the Fisher~or complex-temperature! singularities.

VII. CONCLUSION

We have studied the Fisher zeros in the complexy plane
of theQ-state Potts model forxÞ1 using the microcanonica
transfer matrix and the high-field, low-temperature series
pansion. We have discussed the transformation of the Fi
zeros of the Q-state Potts model into those of th
(Q21)-state Potts model forx,1, and into those of the
one-state Potts model forx.1. For x,1 we have obtained
the critical line and calculated the critical exponents for s
eral values ofx. From the high-field, low-temperature serie
expansion we have shown that for 3<Q<6, the specific
heat, magnetization, susceptibility, and the density of ze
diverge algebraically at the Fisher edge singularity w
characteristic edge exponentsae , be , andge .

FIG. 4. Fisher zeros in the complexy plane of a 535 six-state
Potts model forx5100 with cylindrical boundary conditions. Th
two plus symbols show the locations of the Fisher edge singular
estimated from the series analysis.
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