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Fisher zeros of theQ-state Potts model in the complex temperature plane
for nonzero external magnetic field
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The microcanonical transfer matrix is used to study the distribution of the Fisher zeros @ftBePotts
models in the complex temperature plane with nonzero external magnetiifjeldnlike the Ising model for
Hq#0, which has only a nonphysical critical poifihe Fisher edge singularjiythe Q>2 Potts models have
physical critical points foH,<0 as well as the Fisher edge singularitiesfgy>0. ForH,<O0, the crossover
of the Fisher zeros of th@-state Potts model into those of th@  1)-state Potts model is discussed, and the
critical line of the three-state Potts ferromagnet is determinedHgor0, we investigate the edge singularity
for finite lattices and compare our results with the high-field, low-temperature series expansion of Enting. For
3=Q=6, we find that the specific heat, magnetization, susceptibility, and the density of zeros diverge at the
Fisher edge singularity with exponents,, B., and y., which satisfy the scaling lave,+28,+ y.=2.
[S1063-651%98)00712-

PACS numbsgs): 05.50+q, 05.70—a, 64.60.Cn, 75.10.Hk

I. INTRODUCTION g(6,T)=0 for |§|< 6,(T). Within this gap, the free energy
is analytic and there is no phase transition. The Yang-Lee
The Q-state Potts modéglL,2] in two dimensions exhibits zeros atd= = §, are called the Yang-Lee edge zeros. Rs
a rich variety of critical behavior and is very fertile ground —T,—0", 6o(T)—0. At T. the gap disappears, i.e.,
for the analytical and numerical investigation of first- and §,(T.)=0 andg(0,T;) =0, which is the characteristic of a
second-order phase transitions. With the exception oflhe second-order phase transition. Beldw, g(0,T)>0 and we
=2 Potts(Ising) model in the absence of an external mag-have a finite spontaneous magnetization. Kortman and Grif-
netic field[3], exact solutions for arbitrar®) are not known. fiths [10] carried out the first systematic investigation of
However, some exact results have been established for thg 9, T), based on the high-field, high-temperature series ex-
Q-state Potts model. Fdp=2, 3, and 4 there is a second- pansion for the Ising model on the square lattice and the
order phase transition, while f@@>4 the transition is first diamond lattice. They found that above., g(6,T) di-
order[4]. From the duality relation, the critical temperature verges at#= + 6y, i.e., at the Yang-Lee edge singularity for
is known to beT,=J/kgIn(1+ Q) [1]. ForQ=3 and 4 the the square lattice. The divergence of the density of the Yang-
critical exponentg5] are known, while forQ>4 the latent Lee zeros means the magentization diverges, which does not
heat [4], spontaneous magnetizatid®], and correlation occur at a physical critical point. Fishgt1] proposed the
length[7] at T are also known. idea that the singularity at the Yang-Lee edge can be thought
By introducing the concept of the zeros of the partitionof as a new second-order phase transition with associated
function in thecomplexmagnetic-field plan¢Yang-Lee ze- critical exponents and the Yang-Lee edge zero can be con-
ros), Yang and Leg8] proposed a mechanism for the occur- sidered as a conventional critical point. Fisher also renamed
rence of phase transitions in the thermodynamic limit andhe Yang-Lee edge zero as the Yang-Lee esiggularity.
yielded a new insight into the unsolved problem of the IsingThe critical point of the Yang-Lee edge singularity is asso-
model in an arbitrary nonzero external magnetic field. Leeciated with a¢? theory, different from the usual critical
and Yang[8] also formulated the celebrated circle theorempoint associated with the)* theory. The crossover dimen-
which states that the Yang-Lee zeros of the Ising ferromagsion of the Yang-Lee edge singularityds= 6. The study of
net lie on the unit circlexo=e€'’ in the complexx the Yang-Lee edge singularity has been extended to the clas-
=exp(BH) plane for any size lattice and any type of bound-sical n-vector model[12], the quantum Heisenberg model
ary conditions. The density of zeros contains all the informa{12], the spherical modgtL3], the quantum one-dimensional
tion about a system and in particular in the thermodynamigransverse Ising mod§l4], the hierarchical modéll5], and
limit the density of zeros completely determines the criticalthe one-dimensional Potts modél6]. Using Fisher's idea
behavior of the systerf8,9,29. For example, the spontane- and conformal field theory, Cardyt 7] studied the Yang-Lee
ous magnetization of the Ising model is determined by thedge singularity for a two-dimensional® theory. Recently
density of zeros on the positive real axis, i.eng(T) the Yang-Lee zeros of the two-dimensior@istate Potts
=2mg(0#=0,T). Above the critical temperaturg;, there is model have been studi¢81].
a gap in the distribution of zeros, centereddatO, that is, In 1964 Fishef18] emphasized that the partition function
zeros in the complex temperature plati@sher zerok are
also very useful in understanding phase transitions. In par-
*Electronic address: kim@cosmos.psc.sc.edu ticular, in the complex temperature plane both the ferromag-
"Electronic address: creswick.rj@sc.edu netic phase and the antiferromagnetic phase can be consid-
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ered at the same time. From the exact soluti@isof the o
square lattice Ising model, Fisher conjectured that in the ab- Zo= E e P, 2
sence of an external magnetic field the zeros of the partition {on}

function lie on two circles iniethe complex=exp(—AJ)  \here{o,} denotes a sum over all possible configurations
plane given byyey=—1+ \2€'? (ferromagnetic circleand and 8= (kgT) 1. The partition function can be written as
yarm=1+2€'? (antiferromagnetic circle Fisher also

showed that the logarithmically infinite specific-heat singu- Nop  Ns

larity of the Ising model results from the properties of the Zo=y N> X Qo(E,M)XMyE, (€)
density of zeros. By numerical investigatiofid| and ana- E=OM=0
lytical methodq 20] it has been concluded that for very spe-
cial boundary conditions the Fisher zeros of the Ising modeL
do indeed lie on two circles, while for more general bound-
ary conditions the zeros approach two circles as the size

herex=efta, y=e A E andM are positive integers 0
E<N, and 0O=sM =N, respectivelyN, and Ng are the
umber of bonds and the number of sites on the latB¢ce

netic field has been studied extensiviill—23,25,30 Ithas g, Q-state Potts model on finite square lattices with self-

been showrj23] that for self-dual boundary conditions near dual boundary condition23] and cylindrical boundary con-
the ferromagnetic critical poing,=1/(1+Q), the Fisher o< to 3<0<8.

zeros of the Potts model on a finite square lattice lie on the In the absence of an external magnetic field, the partition

circle with center—1/(Q—1) and radiusJ@/(Q—.l) inthe " fynction of theQ-state Potts model is symmetric under the
complexy plane, while the antiferromagnetic circle of the 4,4 transformation

Ising model completely disappears f@>2. It is also
known [23] that all the Fisher zeros of the one-state Potts 1-y

model lie aty~*=0. Shrocket al. showed that for the two- Y= 17 0-1y’ 4
dimensional Isindg24] and Pottd25] models in the absence

of an external magnetic field there exist nonphysical criticalhich gives the critical point

points in the complex temperature plane, at which thermody-

namic functions including the magnetization diverge. Itzyk- 1

son et al. [26] considered the Fisher zeros in an external Ye= )
magnetic field for the first time. They studied the movement 1+Q

of the Fisher zero closest to the positive real axis for the

. L and the invariant ferromagnetic circle of the Fisher zeros
Ising model as the strength of a magnetic field changes. For 9

nonzero magnetic field there is a gap in the distribution of —1+Qé?
the Fisher zeros of the Ising model around the positive real Yo(6)= —o-1 (6)
axis even in the thermodynamic limit, which means that Q

there is no phase transition. Matveev and Shi@a# studied 1,5 4 ition function of the Ising model has the additional
the Fisher zeros of the two-dimensional Ising model in ansymmetry

external magnetic field using the high-field, low-temperature
series expansion and the partition functions of finite-size sys- 1
tems. They found that for nonzero magnetic field, the mag- y— =, (7)
netization, susceptibility, specific heat, and the density of y

zeros diverge at the Fisher zero closest to the positive reglhich maps the ferromagnetic Ising model to the antiferro-

axis, which we call the Fisher edge singularity. In this papefmagnetic model. This, together with the dual transformation,
we discuss the Fisher zeros of tQestate Potts model for jmpjies the invariance of the antiferromagnetic circle
nonzero magnetic field using the microcanonical transfer ma-

trix and the high-field, low-temperature series expansion. yo=1+ \/Ee”’. )

However, theQ>2 Potts models do not possess this second

symmetry and the associated Fisher zeros are scattered in the

noncritical region. For nonzero magnetic field the Ising
The Q-state Potts model on a lattio® in an external model also has the symmetry

magnetic fieldH is defined by the Hamiltonian

II. MICROCANONICAL TRANSFER MATRIX
AND SYMMETRIES

1
X— 2 ©)

Ho=—32 8(01,0)~Hs2 d(oa), (D
() k and the Fisher zeros forOx<<1 have the same properties as
those for IKXx<. TheQ>2 Potts models do not have this
whereJ is the coupling constan{j,j) indicates a sum over symmetry, and distribution of zeros forxk<1 is different
nearest-neighbor pairsr;=0,...,Q—1, andq is a fixed from the distribution for X x<c. Because th€>2 Potts
integer between 0 an@—1. The partition function of the models are less symmetric than the Ising model, the zeros of

model is the partition function have a much richer structure. For ex-
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FIG. 1. Fisher zeros in the complexlane of a % 7 three-state Potts model f@) x= 1, (b) 0.5, (c) 0.05, andd) 0.001 with self-dual
boundary conditions.

ample, the Ising model has only nonphysical critical pointsan external magnetic field. As decreases from 1 to O, the
in the complexy plane forx# 1, while theQ>2 Potts mod- Q-state Potts model is transformed into th@1)-state
els have both nonphysical and physical critical points in theéPotts model in zero external field. Figure 1 shows the Fisher
same plane fok# 1. In this paper we study the Fisher zeros zeros in the compley plane of the three-state Potts model
of the Q-state Potts model for nonzero magnetic field to un-for x<1 with self-dual boundary conditions. Note that in the
veil some of the rich structures of the model. absence of an external magnetic field for self-dual boundary
conditions the Fisher zeros in the critical region of the Potts
lll. FISHER ZEROS OF THE THREE-STATE POTTS
MODEL FOR x<1 TABLE I. The critical temperaturg. and the critical exponent
y, of the three-state Potts model fo&k=<1.

In the limit H;— — (x—0) the partition function of

the Q-state Potts model becomes X y. (BST) yc (exack vy, (BST) vy, (exac)
Np, 0 0.414(3)+0.0002(4) 0.4142B... 1.0012) 1
ZQ:nybZ QQ(E,M:O)yE, (100  0.001 0.414(3)0.0002(4) 1.0012)
E=0 0.05 0.413(5)0.0002(3) 1.00096)
0.5  0.400(2)0.000(2) 0.98321)

where ()o(E,M=0) is the same as the number of states; 0.366(2)+0.0002(5) 0.36605 ... 1.1953) §
Qq-1(E) of the (Q—1)-state Potts model in the absence of
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TABLE II. Values of 8, andy, estimated from Dlog Padap-
1141 proximants to magnetization f@ =3 andx=100.
! [N/D] Be Ye
110 [7/8] —0.2077 1.243256 1.052564
. 1oy [8/8] —0.1967 1.236604 1.045093
1.06 | [9/8] —-0.1952 1.23744%1.043712
1.04 | [8/9] -0.1954 1.238006 1.043638
102l [9/9] —0.1957 1.236733 1.044346
ool [10/9] —0.1939 1.235098 1.044025
’ [9/10] —0.1956 1.2355561.044725
0.98 = ] 2 3 4 5 [10/10] —0.1953 1.235416 1.044633
—Hg [11/1Q —0.1930 1.23308F 1.045059
[10/17 —0.1956 1.235528 1.044727
FIG. 2. Critical temperatures of the three-state Potts ferromagnqtll/ll] —0.2003 1.23391% 1.047358
as a function of the magnetic fiv.ellsﬂq is in units ofJ gndT is in [12/17] ~0.1975 1.233556 1.046650
unlts_oth/kBl_. 'I_'th: upper dOtthe'ld |I;e ||s the Isdlntgz t(;alrjsmork]] temp;ﬁra-[llllz] —0.1972 1.233675 1.046438
ture in the limitH,— —o, while the lower dotted line shows the
critical temperatuge of the three-state Potts modelHgr0. [12/12) ~0.1977 1.2335381.046729
[13/12 —0.1975 1.2335491.046638
model lie on the circle given by E@6) [23]. In Fig. 1(a) the Héﬁg‘] _g'iggi 1§gggg 1'82322;
circle is that of Eq.(6) with Q=3 (the three-state Potts [14/13 _0'1966 1'2333491'046474
circle), while in Figs. 1c) and Xd) the circle is forQ=2 [13/14] _0'1943 1.2328191.046075
(the Ising circle. In Fig. 1(b) we show both the three-state : ' '
Potts circle(smaller ong and the Ising circlglarger ong, [14/14 —0.1937 1.2318501.046918
and the Fisher zeros lie on neither the three-state Potts circle>/ 4 —0.1970 1.233458 1.046527
nor the Ising circle. In Fig. &) the Fisher zeros near the [14/19 —0.1945 1.2328891.04603%
ferromagnetic critical point begin to approach the Ising[15/15] —0.1945 1.231888 1.047107
—0.1966 1.2333281.046471

circle, and the antiferromagnetic circle of the Ising modell16/15

begins to appear. In Fig.(d) almost all of the Fisher zeros,
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FIG. 3. Fisher zeros in the complgxplane of an &8 three-
state Potts model fdi= 8H varying from 0 to 4 in steps of 1 with
cylindrical boundary conditions.

which will ultimately lie on the ferromagnetic circle of the
Ising model atx=0, are very close to this locus, and the
antiferromagnetic circle becomes clearer.

IV. CRITICAL POINT OF THE THREE-STATE POTTS
MODEL IN A FIELD H <0

For an external fieldH,<0, one of the Potts states is
suppressed relative to the others. The symmetry of the
Hamiltonian is that of the@— 1)-state Potts model in zero
external field, so that we expect to see crossover from the
Q-state critical point to the@—1)-state critical point as
—H, is increased.

We have studied the field dependence of the critical point
for 0=<x=1 through the Fisher zero closest to the real axis,
y1(x,L). For a given applied fieldy; approaches the critical
pointy;(L)—Yy.(X) in the limit L—o, and the thermal ex-
ponenty,(L) defined ag22,26

In{Im[y,(L+1)]/Im[y,(L)]}
IN[(L+1)/L]

yi(L)=— (11)

will approach the critical exponemgt(x). Table | shows val-
ues fory(x) extrapolated from calculations @gf(x,L) on

L XL lattices for 3=L<8 using the Bulirsch-StoefBST)
algorithm[32]. The error estimates are twice the difference
between therf—1,1) and 6—1,2) approximant$32]. The
critical points for x=1 (three-statg and x=0 (two-state
Potts models are known exactly and are included in Table |
for comparison. Note that the imaginary partsygf(BST)
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TABLE Ill. The location and the edge critical exponents of the Fisher edge singularity for the three-state

Potts model.

X Ye (BST) Ye (serieg [0 Be Ye
20 0.880(2)+0.643(2) 0.880(4 1+ 0.641(3) 1.21) —-0.19(1) 1.21)
100 1.233(7) 1.050(3) 1.232(2)+1.048(3) 1.222) —-0.197(6) 1.2()
200 1.436(8) 1.270(1) 1.436(2)11.268(2) 1.222) —0.196(7) 1.213)

are all consistent with zero. We have also calculated thsingularity. The critical exponents associated with the edge
thermal exponenty,, applying the BST algorithm to the singularity are defined in the usual way,
values given by Eq11), and these results are also presented

in Table 1. Forx= 1 we findy, very close to the known value c N( - l) e 15
y;= 6/5 for the three-state model, but foas large as 0.5 we e Ye '
obtainy,=1, the value of the thermal exponent for the two-
state(lsing) model. y | Pe
Figure 2 shows the critical line of the three-state Potts me~(1— )7) - (16)
ferromagnet foH,<0. In Fig. 2 the upper line is the critical €
temperature of the two-state model (Q=2)=1/In(1 gpg
+4/2), and the lower line is the critical temperature for the
three-state modeT,.(Q=3)=1/In(1+ 3). The critical line y\ 7
for small —H, is given by[33] Xe~<1— ﬁ) ; 17

T—Tc(Q=3)~(—Hg)t"n, 12

wherey,= 6/5 andy,,= 28/15 for the three-state Potts model.

V. FISHER ZEROS OF THE THREE-STATE POTTS
MODEL FOR x>1

In the limit Hy—o (x—) the positive fieldH, favors
the state for every site and th@-state Potts model is trans-
formed into the one-state mod&3]. The zeros are given by

Np
Zo~y N D Qo(E,M=NgyE=0. (13)
E=0

Because()o(E,M=N,)=1 for E=0 and 0 otherwise, Eq.
(13 is

y No=0, (14

As x increasesy| for all the zeros increases without bound.

Figure 3 shows the Fisher zeros in the compjgtane of
the three-state Potts model for= BH varying from 0 to 4 in

wherey, is the location of the Fisher edge singularity, and
C., Mg, and y. are the singular parts of the specific heat,
magnetization, and susceptibility, respectively.

To study the critical behavior at the Fisher edge singular-
ity, we have used the high-field, low-temperature series ex-
pansion for the three-state Potts model due to Erjtdg36,
which is coded as partial generating functions. Table Il
shows estimates for, and 8, from Dlog Padeapproximants
[35] for the magnetization at=100. For this value ok we
find @,=1.222), Be=—0.1976), andy.,=1.203). Note
that bothB,. and «, are unphysical in thgB.<0 implies a
divergent magnetization ang.>1 implies a divergent en-
ergy density. The density of zeros near the Fisher edge sin-
gularity in the complex temperature plane is given|b§]

1-ag
LY

Ye 18

g(y)~(

Therefore,a.>1 means that the density of zeros diverges at
the Fisher edge singularity. From,, 8., andy, we obtain

aet2Bet+ y.=2.034), (19

steps of 1. Ash increases, all the Fisher zeros move away

from the origin. Note that foh>0 there is accumulation of

so that the Rushbrooke scaling lawt-28+ y= 2, which is

the Fisher zeros as we approach the Fisher edge zero, that ksiown to hold at a physical critical point, is also satisfied at
the Fisher zero closest to the positive real axis. That kind ofthe Fisher edge singularity. From the series expansions for

accumulation suggests that for-0 the density of zeros di-

the specific heat, magnetization, and susceptibility we have

verges at the Fisher edge zero, which we call the Fisher edgebtained the location of the Fisher edge singularity

TABLE IV. The location and the edge critical exponents of the Fisher edge singularity for<@ 4

<6 Potts models ang=100.

Q Ye (BST) Ye (serieg Qe Be Ye

4 1.13(6)+0.96(4) 1.159(5}0.93(1) 1.188) —0.180(4) 1.18)
5 1.09(4 ) 0.861(8) 1.103(4)0.86(1) 1.2(1) —0.173(4) 1.1)
6 1.053(8)+0.811(4) 1.2(1) —0.164(9) 1.10)
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ye(serieg=1.2322)+1.0483)i, (20

which is in excellent agreement with the value we calculate
by extrapolation from finite-size systems using the BST al-
gorithm,

Yo(BST)=1.2337)+1.05Q 3)i. (22)

We have also studied the critical behavior at the Fisher edge
singularity for several values of Table Il shows the edge
critical exponents and the location of the Fisher edge singu-
larity for x=20, 100, and 200. The edge critical exponents
for any x satisfy the relationae+28.+ y.=2 within our
error estimates. The locations of the Fisher edge singularity
obtained from the series analysis agree very well with those
extrapolated from finite size data by the BST algorithm.
Table Ill suggests that the values of the edge critical expo-
nents are independent gf

""00.000

.0.....4‘

VI. FISHER ZEROS OF THE Q>3 POTTS MODELS
FOR NONZERO MAGNETIC FIELD

Using the high-field, low-temperature series expansion of
the Q-state Potts model for4 Q=6 [36], we have studied
the critical behavior at the Fisher edge singularity for
Q>3. Table IV shows the edge critical exponents and the
locations of the Fisher edge singularities foc®<6 and
x=100. The edge critical exponents for aQysatisfy the
relation a.+2B.+ y.=2 within our error estimates. A®
increasesB, appears to decrease slightly, whidg and vy, ) ) _
are constant within error. However, because the uncertaintiggstimated from the series analysis.

in ae and . are large, we do not know whetheg andye  \yhich has been the traditional methi@5,27] in the stud

. , y of
are truly independent d. Even though the Yang-Lee edge the Fisher(or complex-temperatuyasingularities.
singularities have never been studied for the two-

dimensionalQ>2 Potts models, according to the study of
other model$10-12,14 and conformal field theorl7] one
expects the critical behavior of the Yang-Lee edge singulari- We have studied the Fisher zeros in the compigtane

ties in two dimensions to be universal. However, in a studyof the Q-state Potts model for# 1 using the microcanonical
[25] of the Fisher(or complex-temperatuyesingularities of  transfer matrix and the high-field, low-temperature series ex-
the Potts model in the absence of an external magnetic fielghansion. We have discussed the transformation of the Fisher
Shrocket al. have observed a dependence of the edge criticateros of the Q-state Potts model into those of the
exponents orQ. In Table IV the BST estimates and the (Q—1)-state Potts model fox<<1, and into those of the
series results for the location of the Fisher edge singularitiesne-state Potts model for>1. Forx<<1 we have obtained
agree with each other fa@=4 and 5. ForQ=6 we have the critical line and calculated the critical exponents for sev-
calculatedo(E,M) up toL =5, and the BST extrapolation eral values ok. From the high-field, low-temperature series
is unreliable because the maximum size of the lattice i®xpansion we have shown that for<x® =<6, the specific
small. Figure 4 shows the Fisher zeros in the comptex heat, magnetization, susceptibility, and the density of zeros
plane of the six-state Potts model fo=100, and the loca- diverge algebraically at the Fisher edge singularity with
tion of the edge singularities calculated from the seriescharacteristic edge exponents, B., and y,.

l
-1

Re(y)

FIG. 4. Fisher zeros in the complgxplane of a 5<5 six-state
Potts model forx=100 with cylindrical boundary conditions. The
two plus symbols show the locations of the Fisher edge singularities

VII. CONCLUSION
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